UNLIMITED FREE ACCESS TO THE WORLD'S BEST IDEAS

close
Already an Engineering360 user? Log in.

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

Customize Your Engineering360 Experience

close
Privacy Policy

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

ACI SP-335

Nanotechnology for Improved Concrete Performance

active, Most Current
Buy Now
Organization: ACI
Publication Date: 1 September 2019
Status: active
Page Count: 144
scope:

ABSTRACT

In cold regions, freezing temperatures limit the construction season to few months, usually between May and September. The use of nanoparticles, which have high specific surface and vigorous reactivity, may potentially enhance the performance of concrete placed at low temperatures. Therefore, this study focused on developing concrete mixtures incorporating nano-silica which were mixed, placed and cured at -5°C (23°F) without any insulation or protection targeting field applications in late fall and early spring periods. Eight mixtures incorporating general use (GU) cement, fly ash (up to 25%), and nano-silica (up to 4%) were tested for this purpose, with waterto- binder ratios of 0.32 and 0.4. All mixtures contained a combination of calcium nitrate and calcium nitrite as an antifreeze admixture. Testing involved concrete setting time (placement), 7 and 28 days compressive strengths (hardened properties) and resistance to freezing-thawing cycles (durability). Moreover, mercury intrusion porosimetry, thermal analysis and scanning electron microscopy were performed to corroborate the trends from the macro-scale tests. It was found that nano-silica significantly improved the overall performance of concrete placed and cured at -5°C (23°F), which implicates its promising use for construction applications under low temperatures.

Document History

ACI SP-335
September 1, 2019
Nanotechnology for Improved Concrete Performance
ABSTRACT In cold regions, freezing temperatures limit the construction season to few months, usually between May and September. The use of nanoparticles, which have high specific surface and...

References

Advertisement