UNLIMITED FREE ACCESS TO THE WORLD'S BEST IDEAS

close
Already an Engineering360 user? Log in.

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

Customize Your Engineering360 Experience

close
Privacy Policy

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

ASTM E3205

Standard Test Method for Small Punch Testing of Metallic Materials

active, Most Current
Buy Now
Organization: ASTM
Publication Date: 1 July 2020
Status: active
Page Count: 12
scope:

This test method covers procedures for conducting the small punch deformation test for metallic materials. The results can be used to derive estimates of yield and tensile strength up to 450 °C, and estimates of the ductile-to-brittle transition temperature from the results of small punch bulge tests in the temperature range from -193 °C to 350 °C for iron based materials or 0.4 Tm for other metallic materials, where Tm is their melting temperature in K.

The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Document History

ASTM E3205
July 1, 2020
Standard Test Method for Small Punch Testing of Metallic Materials
This test method covers procedures for conducting the small punch deformation test for metallic materials. The results can be used to derive estimates of yield and tensile strength up to 450 °C, and...

References

Advertisement