Standard: NACE 01104


This standard is available for individual purchase.

or unlock this standard with a subscription to IHS Standards Expert

IHS Standards Expert subscription, simplifies and expedites the process for finding and managing standards by giving you access to standards from over 370 standards developing organizations (SDOs).

  • Maximize product development and R&D with direct access to over 1.6 million standards
  • Discover new markets: Identify unmet needs and discover next-generation technologies
  • Improve quality by leveraging consistent standards to meet customer and market requirements
  • Minimize risk: Mitigate liability and better understand compliance regulations
  • Boost efficiency: Speed up research, capture and reuse expertise
For additional product information, visit the IHS Standards Expert page.

For more information or a custom quote, visit the IHS Contact Us page for regional contact information.


Reinforced concrete is a versatile and widely used construction material. Its excellent performance and durability rely on the compatibility of the steel with the concrete surrounding it and the ability of the concrete to protect the steel from corrosion in most circumstances. Corrosion of the steel reinforcement does not occur, despite the presence of moisture and oxygen in the concrete pores, because of the alkalinity of the concrete pore water creating a passive oxide film on the reinforcing steel. Unfortunately, corrosion protection is not guaranteed and can fail if sufficient chlorides (usually in the form of sea salt, deicing salt, or chloride contamination of the original mix) or atmospheric carbon dioxide (CO2) penetrate the concrete. This leads to the breakdown of the passive layer that protects the steel. This breakdown of the passive oxide layer leads to corrosion of the reinforcing steel if sufficient oxygen and water are available.

Regardless of the cause of depassivation (chlorides or carbonation), corrosion occurs by the movement of electrical charge from an anode (a positively charged area of steel where steel is dissolving) to the cathode (a negatively charged area of steel where a charge-balancing reaction occurs, turning oxygen and water into hydroxyl ions).

One solution to carbonation-induced reinforcement corrosion involves applying an electrochemical treatment that suppresses corrosion. Figure 1 shows the basic components of an electrochemical treatment system for realkalyzing concrete. The components are a direct-current (DC) power source and a temporary anode distributed across the surface of the concrete encased in a conductive medium or electrolyte.

Electrochemical methods work by applying an external anode and passing current from it to the reinforcing steel so that all of the steel becomes a cathode.

Three electrochemical techniques are used to counter corrosion of steel in concrete. Cathodic protection can be applied by impressed current or galvanic anodes. Electrochemical chloride extraction (ECE) uses a temporary anode and high current over a period of 4 to 6 weeks (see NACE Publication 011011). Realkalization is a method for treating carbonated concrete. It is similar to ECE but takes approximately one week and is gaining rapid acceptance as a rehabilitation method for carbonation in buildings and other structures. Both ECE and realkalization use currents up to about 1 A/m2 (0.1 A/ft2) of steel surface area.

Organization: NACE International
Document Number: nace 01104
Publish Date: 2004-01-01
Page Count: 7
Available Languages: EN
DOD Adopted: NO
ANSI Approved: NO
Most Recent Revision: YES
Current Version: NO
Status: Inactive

This Standard References

Showing 2 of 2.

Standards That Reference This Standard

Showing 5 of 5.