UNLIMITED FREE ACCESS TO THE WORLD'S BEST IDEAS

close
Already an Engineering360 user? Log in.

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

Customize Your Engineering360 Experience

close
Privacy Policy

This is embarrasing...

An error occurred while processing the form. Please try again in a few minutes.

ASTM E2617

Standard Practice for Validation of Empirically Derived Multivariate Calibrations

inactive
Buy Now
Organization: ASTM
Publication Date: 15 May 2008
Status: inactive
Page Count: 11
ICS Code (Metrology and measurement in general): 17.020
scope:

This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression (PCR), Partial Least Squares (PLS), Artificial Neural Networks (ANN), or any other empirical calibration technique whereby a relationship is postulated between a set of variables measured for a given sample under test and one or more physical, chemical, quality, or membership properties applicable to that sample.

NOTE 1-Empirically derived calibrations are sometimes referred to as "models" or "calibrations." In the following text, for conciseness, the term "calibration" may be used instead of the full name of the procedure.

This practice does not cover procedures for establishing said postulated relationship.

This practice serves as an overview of techniques used to verify the applicability of an empirically derived multivariate calibration to the measurement of a sample under test and to verify equivalence between the properties calculated from the empirically derived multivariate calibration and the results of an accepted reference method of measurement to within control limits established for the prespecified statistical confidence level.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Document History

December 15, 2017
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...
March 1, 2010
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...
April 1, 2009
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...
March 1, 2009
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...
October 1, 2008
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...
October 1, 2008
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...
ASTM E2617
May 15, 2008
Standard Practice for Validation of Empirically Derived Multivariate Calibrations
This practice covers requirements for the validation of empirically derived calibrations (Note 1) such as calibrations derived by Multiple Linear Regression (MLR), Principal Component Regression...

References

Advertisement